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Abstmc-The time dependent convective-diffusion equations for mass transfer between a drop and a 
continuous phase am solved in two cases: (1) the case of small Reynolds numbers and (2) the case of 
potential flow. The equations are solved by means of a similarity variable vi = y/S,(B, t) which enable their 
transformation into an ordinary differential equation for the concentration ci = ci(qJ and a first order 
equation with partial derivatives for ai = 6,(0, t). Equations for the mass-transfer coefficient for the un- 

steady and steady states are obtained. The time in which the steady state is reached is evaluated. 

a, 

NOMENCLATURE 

drop radius ; 
u P’ 

vo, c--f 
7 I, I a,’ ’ 

Ai, Bi, constants given by equations (20-23) ; 
LPTP 

concentration ; 
y 

I distance at the interface considered 

value of ci for t = 0 and for jyj + cc ; 
positive if directed toward the center 

diffusion coefficient ; 
of the drop ; 

V - ..I, 
1, - YIU. 

Pei, 
Pe:, 
Pe;', 

r, 

ShiT 
4 

T 

T’, 

u, 
%, iv 

equilibrium dissolution constant ; 
mass-transfer coefficient ; 
mass flux ; 
average mass flux over the drop 
surface ; 
= &i/p + p’) Pe: ; 
= 2aU/D, P&let number; 
= 3 Pei; 
radial variable (spherical coordinate 
system) ; 
= 2Kia/D, Sherwood number ; 
time ; 

1 tu /A’ = ---. 
2 a p++” 
3tU =--a 
2 a ’ 

Greek symbols 

ai, B, constants; 

6i, length introduced by means of the 
similarity variable vi ; 

A, = &/a; 
Ei, = A:; 

tti7 = Y16i; 
4i9 arbitrary functions; 

ICI, function defined by equation (35); 

I.4 viscosity of the dispersed phase ; 

P’9 viscosity of the continuous phase; 
= tDJa2; 
polar angle (spherical 
system). 

coordinate 

translational velocity of the drop ; Subscripts 

radial component of velocity with ‘3 for the dispersed phase ; 

respect to the center of the drop ; 2, for the continuous phase. 

tangential component of velocity with 
respect to the center of the drop ; 

INTRODUCTION 
_ 

* Address for correspondence: Polytechnical Institute, THE PROBLEM of heat or mass transfer between 
Bucharest, Rumania. a drop or a bubble and a continuous phase has 

1985 
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been usually examined by assuming that the 
steady state is achieved and that the interface 
concentration of the drop is constant. Of the 
papers in which this problem is dealt with we 
mention only a few [l-5]. In two recent papers 
[6, 73 the time dependent convective diffusion 
equation has been solved numerically. Bentwich, 
Szwarcbaum and Sideman [6] have studied the 
case of mass transfer in the continuous phase 
assuming potential flow and Johns and Beckman 
[7] the case of mass transfer in the dispersed 
phase for small Reynolds numbers. 

In the present paper the problem of mass 
transfer will be examined by solving analytically 
in a limiting case, the time dependent convective- 
diffusion equations of the dispersed and of the 
continuous phase. Two cases will be dealt with : 
the case of small Reynolds numbers and the 
case of potential flow. The problem will be 
solved by means of a similarity transformation 
suggested by the author in a previous paper [8]. 

MASS OR HEAT TRANSFER BETWEEN 

A SINGLE SPHERICAL DROP AND THE 

CONTINUOUS PHASE FOR Re i 1 

The convective-diffusion equation has the 
form 

ac. 
-2 
St 

+v &i+Vg,i~& 
rv’ ar Y ae [ 

&i 
’ ar2 

2aci 1 a ac. 
+;z+p- 

r2 sin e ae ( I 
sin e 1 

ae (1) 

where i = 1 refers to the dispersed phase and 
i = 2 to the continuous phase. For the velocity 
components Hadamard’s equations are valid 
[3,4] : 

4.1 = - v. i - 5 cos e ( ) (2) 

u,, i = u0 1 - $ sin e 
( > 

(3) 

4.2 = [(; - uo)($-3 

+ (oO -?)(:I1 + U]c0se (4) 

L(y-3(:)‘- U]sinR (5) 

where 

The diffusion coefficient in a liquid is very 
small. For this reason if the time of contact of 
an element of fluid with the interface is not too 
large, the depth of penetration by diffusion is 
also small. An element of liquid from the 
continuous phase remains in contact with the 
drop a very short time, of the order of 2a/U, 
and continuously fresh elements of liquid are 
brought into contact with the interface. For 
this reason the depth of penetration by diffusion 
in these elements is very small. 

In the dispersed phase there exists the circula- 
tion motion known as the “Hadamard’s rings”. 
Elements of liquid are brought into contact 
with the interface of the drop at the front 
stagnation point and are moving along the 
interface up to the rear stagnation point; in 
this point the motion is dirrected along the 
vertical up to the front stagnation point. 
Consequently the elements of liquid brought 
into contact with the interface are continually 
the same, fresh elements coming into contact 
with the interface only during the initial lapse 
of time equal to that needed for an element of 
fluid to pass through the distance between the 
rear and the front stagnation point. However, 
as long as the elements of fluid are in motion 
along the interface a process of mass transfer 
takes place between them and the liquid from 
the continuous phase, while as long as they are 
in motion along the vertical they exchange mass 
with the bulk of the dispersed phase. In this 
manner, though the elements of liquid brought 
into contact with the interface are the same, 
they are refreshed in some measure and the 
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process of mass transfer at the interface occurs 
for not too large times approximately as if they 
would be fresh elements. There exists therefore 
for not too large values of the time an approxi- 
mate similarity with the mass transfer in the 
dispersed phase. 

Since the depth of penetration by diffusion 
is small the concentration varies appreciably 
in the immediate vicinity of the interface and is 
practically constant at somewhat larger dis- 
tances. However, in the immediate vicinity of 
the interface y 6 a and we may approximate 
the velocity distribution by means of the 
expressions obtained by expanding equations 
(2-5) in series with respect to y/u and by retaining 
only the first term. 

In this manner one obtains 

0,. i = - 2V, ’ COS 8, 
a 

(6) 

vo, i = - v. sin 19. (7) 

The calculations which follow are therefore 
valid if the depth of penetration is small as 
compared to the drop radius. Neglecting also, 
as usual, the terms 

1 a sin*!?! ~- 
r2 sin e ae ( > ae 

and (2/r)(dcJ&) as compared to Di a2c@y2*, 
the following convective-diffusion equations 
results 

(8) 

* We note that in the case examined here the average 
value of 

Di d 
~- 

r2 sin 0 ae 
over the drop surface may be neglected compared to the 
average of Di k%Jd~? and also that the average value of 
(2DJa)(&&) over the thickness hi of the diffusion boundary 
layer may be neglected compared to the average of D, i?c&~~. 
To these conclusions one may arrive by using equation (18) 
for q. 

where 
tDi 

Ti f - 

a2 

Pe. E 1 p’ 2aU __ 
’ 4 /J + p’ Di 

Pb) 

Y 2. 
a 

The following initial and boundary conditions 
must be satisfied : 

for Zi = 0, ci=~i,~ and c~=c~,~ (10) 

for Y = 0, c1 =Hc, and DI$=D2g 

(11) 
for Y + cc Cl + Cl,0 w-4 

for Y + - cc c2 + c2 o. (I2b) 

The boundary conditions (12) are a result of 
the fact that the depth of penetration by diffusion 
is small and consequently the distribution of 
concentration in the vicinity of the interface of 
the drop may be approximated by that valid 
for a semi-infinite fluid. We not also the fact 
that the boundary condition (12a) implies the 
assumption that the elements of liquid brought 
into contact with the interface at the front 
stagnation point have the initial concentration 
cl.0 (see also the above discussion). 

Equations (8) and the initial and boundary 
conditions (10-12) are compatible with solutions 
of the form 

where 
ci = ci(?i) (13) 

Y y 
Vi=$=z Ai = Ai(8, Zi). (14) 

The new variable ?i enables the transforma- 
tion of equations (8) into 

d2ci dci 
s + ‘li d?i 

(15) 
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In order that c = Ci(~i) and Ai = Ai(ri, 0), we The functions di are determined by solving 
must have equations 

i$ - *(Pe,cos8)& - $sinSg=/? (16) 2 - 4(Peicos8)si - Pe,sino$ = 4, (24) 
I I 

(17) where 

j being an arbitrary positive constant. Selecting .si s A; (25) 

/I = 2, the solutions of equations (17) are 
for the boundary condition 

c1 = A1ye-xzdx + B1 (18) 
0 Ei = 0 for ri = 0. (26) 

c2 = A, y edX2 dx + B,. (19) The last boundary conditions result as a 
0 consequence of the initial condition (10). Indeed, 

The boundary conditions (11) and (12) enable only if Ai = 0 for Zi = 0, equations (18) and (19) 
the determination of the four constants. One satisfy the initial conditions (10). 
obtains 

Al = 
(2 - c2,+ 

Dl+ 1 - 0 D, +irz 

Cl,0 
2 H c2,o 

A2 =- 
Jn 

The characteristic system which may be 
attached to equation (24) has the form 

(20) dz, _ _ de d&i 

1- 
-----= 
Pei sin 8 4(Pei COS e) Ei + 4’ (27) 

From the first equation one obtains 

(21) 
Peiri + In tan i = ai 

and from the second 

1 

(22) Ei = sin4 [ 
a;+&c0Se-+c0s3e) i 1 

Therefore 

&i sin40 - (4/PeJ (cos 8 - + cos3 8, 

= &i(Peiri + hi tan e/2), (28) 

(23) 
where pi is an arbitrary function. 

The form of the functions 4i is determined by 
taking into account the boundary conditions 

In the establishment of the expressions of (26). For ri = 0 we have 
the constants A, and Bi it is an important fact, 
to be shown below [see equation (30)] that 

W& = (D,lD,)*. 
(@i Intan:)= - &(C0Se - 4cos3e). 
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However 

COST = 

1 - tan2i 1 - exp 2lntani 
( ) 

1 + tan2; =zL+LJ 

and therefore 

pi (,,i~i + In tan 3 

Consequently 

dfsin4tI=$ case-fc0s3e 

I 

i 

I 1 - tan2 i exp (2ziPei) 
- 

1 + tan2 i exp (2TiPeJ 

We remark the fact that the product 

zPe -D&l P’ 2aU 
i i 

-- 1tU P’ = y- 

a24p+$ Di =Zap+p’ 

does not depend on the index i. For this reason 
equation (29) leads for the ratio 6,/6, to the 
equation 

For the mass flux N, one obtains 

NC-D ac, 0 
2 c2,o 

-2 Cl 0 

H D, Pe, * -- 

e ’ ay + y=o =F 0 D, 1 0 a 4 

E +z 

sin’ e 

The average mass flux over the surface of the drop is given by 
I 

N=&2 
I 

2xa2 N, sin 8 de 

0 

(30) 

(31) 

(32) 

5X 
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If one introduces an overall mass-transfer coefficient IS,, defined by 

K, = 
N 

HC2.0 - Cl,O’ 
equation (32) may be written under the form 

where 

(33) 

(34) 

sin3 0 de 

1 - tan’ I e2r 1 /l - tan2 1 e2’\ 
3 f 

’ 
(35) 

J o c0se - +c02e I 
Table 1 (34) leads to 

T $ 

DO1 19.930 
@lo 6.340 
0.30 3.740 
050 3.014 
1 2.461 
2 2.315 
3 2.309 
5 2.309 

10 2.309 
100 2.309 

For an overall mass-transfer coefficient K,, 
defined by 

K, = 
N 

c2,o 
Cl 0 -2 

H 

one obtains 

Several limiting cases may be evidenced : . 
(1) If D, % D, the diffusion in the dispersed 

phase is the rate determining step and equation 

1 + tan2ie2r + ‘\1 + tan2ie2Tjj 

Shl = % ’ t&T). ( > 
If ri + 0, equation (37) leads to 

Sh ,2’ 
l Jlt zi’ 

(37) 

(37’) 

i.e. to the result of Higbie’s penetration theory. 
For T % 1, equation (37) leads to 

0 
_) Sh,=+ 2 . 

J 
(37”) 

Equation (37”) is valid for a hypothetical 
steady state which would be achieved if the 
amount of mass transferred along the interface 
were equal to that exchanged by the elements of 
fluid with the bulk of the dispersed phase (so 
that the elements of liquid brought into contact 
with the front stagnation point had continuously 
the concentration cl, o). 

(2) If Dl % D, the diffusion in the continuous 
phase is the rate determining step and equation 
(36) leads to 

Sh2 = ff? 0 7L h 
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e2 
) 
+ 

The steady state for which equation (38) is 
valid is achieved after a time given by T x 5. 

It is of interest to note that the interface 
concentration is constant and that the overall 
mass-transfer coefftcient may be obtained by 
the usual law of additivity of the resistances. 

It may also be stressed that in the framework 
of the approximations used here the equations 
for the mass-transfer coefficient are the same 
for the continuous and for the dispersed phase. 
A qualitative explanation of this result has 
been given above. 

The main approximation used above is 
6i 4 a. It is not difficult to show that such an 
inequality is valid if Pei $ 1. 

MASS OR HEAT TRANSFER BETWEEN 
A SINGLE SPHERICAL DROP AND 

A CONTINUOUS PHASE FOR 
THE POTENTIAL. FLOW 

In the vicinity of a fluid boundary and for 
sufliciently large Reynolds number the role of 
the viscosity is not too important and for this 
reason it is possible to approximate the velocity 
distribution by that valid for potential flow. 

In this case we have 

a3 
V,,i= U 1 -;-j COSe ( > (39) 

a3 
Ve,i=-U l+- sin& ( > 2r3 W) 

Since in the region of interest y $ a, we may 
approximate the above equations by 

v, i = - 3&0se, 
a 

Ve,i = - $Jsin& (42) 

Equation (1) becomes in this case (after the 
above mentioned simplifying assumptions are 
made) 

gi _ a2ci 
- 2 + Pei’ 

aq i?Y ( 
- 2n0s 8% 

+ sin 62 
> 

(43) 

where 

Equations (43) being of the same form as 
equations (8) all the above equations obtained 
for the mass-transfer coefficient may be ex- 
tended to this case too, if Pei is replaced by Pei’. 

In this manner we get 

WY (45) 

and 

1 

1 D2’ 

0 

vW’) (46) 
-- 
H Di 

+l 

where 

3aUtDi 3tU 
T’ E Pei’q E Z-z = 5;. (47) 

I 

It may be verified that in the limiting case of 
D, % D2 and T’ % 1 (steady state) one obtains, 
as expected, Boussinesq’s equation 

(48) 

The steady state is achieved after a time 
T’ x 5. 

An equation of the same form is obtained in 
the limiting case D, % D, and T’ B 1 

’ (4% 

Equation (49) is valid for a hypothetical steady 
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state similar to that discussed above in con- 
nection with small Reynolds numbers. 1. 

2. 

3. 

CONCLUSION 4. 

Exact analytical solutions have been obtained 
for the time-dependent convective-diffusion 5. 
equations in the case of mass transfer from 
spherical drops for the cases in which the depth ” 
of penetration by diffusion is very small. The 
method is based on a similarity variable 
vi = y/6i(t, 8) which enables the transformation 7, 
of the second order equation with partial 
derivatives into an ordinary equation for the 8, 
concentration and a first order equation with 
partial derivatives for 6i = &t, 0). 
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R&rm~Les equations de la diffusion avec convection dependant du temps pour le transport de masse 
entre une goutte et une phase continue sont resolues dans deux cas : (1) le cas des petits nombres de Reynolds, 
et (2) le cas de I’bcoulement potentiel. La resolution est effect& au moyen d’une variable de similitude 
vi = y/&(6, t) qui permet de les transformer en une equation differentielle ordinaire pour la concentration 
ci = ci(ni) et une equation aux derivees partielles du premier ordre pour hi = br (0, t). Les equations donnant 
le coefficient de transport de masse pour les Ctats stationnaire et non-stationnaire sont obtenues. Le temps 

au bout duquel l’etat permenent ets atteint est Cvalue. 

Zasammenfassung-Die zeitabhangigen Konvektions-Diffusions-Gleichungen fur den Stofftransport 
zwischen einem Tropfen und einer kontinuierlichen Phase sind fur zwei Falle gel&t : (1) fiir den Fall 
kleiner Reynolds-Zahlen und (2) fiir den Fall der Potentialgleichung. Die Gleichungen wurden mit Hilfe 
einer Ahnlichkeitsvariablen vi = y/si(6, t) gel&t, welche ihre Transformation in gewiihnliche Differential- 
gleichungen fur die Konzentration ci = ci(qi) und in eine Gleichung erster Ordnung mit partiellen 
Ableitungen fur ai = 6,(6, t) ermoglicht. Gleichungen fur den Stofftibergangskoeffizienten fur stationare 
und instationare Zustlnd liessen sich erhalten. Die Zeit, nach welcher der stationare Zustand erreicht ist, 

wird berechnet. 

AHnonqHa-Pemeubr ypaBHeHKU KOHBeKTWBHOfi JW#M$yaAK, 8aBKCFlt4eft OT BpeMeHK, Wlfl 

nepeHoca MaCCH MemAy Kannefi K cnonuuio~ @aaott B ABYX cnysaax: (1) npa riefionbutux 
‘IHCJIaX PetiHOJIbACa K (2) AJIf3 CJIyVaR. lIOTeHIJUaJIbHOr0 IlOTOKa. YpaBHeHUR peUlaloTCK C 

IIOMOlqblO IlOflCTaHOBKK I)( =J'/&(@,t), YTO IlOaBOJUleT IlpeO6paaOBaTb AaHHbIe ypaBHeHHR 

B o6arYHnre AK@#epeH~KaJIbHbIe ypaBHeHKH AJIK KOHl4eHTpaWK Ct = Ct (v<) II B ypaBHeHHe 

IlepBOrO IlOpRAKa B 'IaCTHYX IlpOHaBOAHhlX AJIR & = h(8.t). nOJIyYeHbl ypaBHeHKfl JVlfl 

KOai##iqKeH~a Maccoo6aeea B CTaqKOHapHHx K HecTaqaoHapHbIx yCJIOBKKX. OIIpeJJeJIeHO 

BpeMJi yCTaHOBJIeHKK CTaqUOHapHOr0 COCTORHHR. 


