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MASS TRANSFER BETWEEN A SINGLE DROP AND
A CONTINUOUS PHASE

E. RUCKENSTEIN*
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(Received 31 May 1967)

Abstract—The time dependent convective-diffusion equations for mass transfer between a drop and a
continuous phase are solved in two cases: (1) the case of small Reynolds numbers and (2) the case of
potential flow. The equations are solved by means of a similarity variable n; = y/6(6, t) which enable their
transformation into an ordinary differential equation for the concentration ¢; = ¢{n,) and a first order
equation with partial derivatives for &; = 56, t). Equations for the mass-transfer coefficient for the un-
steady and steady states are obtdined. The time in which the steady state is reached is evaluated.
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NOMENCLATURE

drop radius;
constants given by equations (20-23);
concentration ;
value of ¢; for t = 0 and for |y| - o;
diffusion coefficient ;
equilibrium dissolution constant ;
mass-transfer coefficient ;
mass flux;
average mass flux over the drop
surface ;
= 1(¢/u + ) Pe;;
= 2aU/D,, Péclet number;
= 3 Pe};
radial variable (spherical coordinate
system);
= 2K,a/D;, Sherwood number;
time;
_ v oy

2ap+yp’
_3U
" 2a’
translational velocity of the drop;
radial component of velocity with
respect to the center of the drop;
tangential component of velocity with
respect to the center of the drop;

* Address for correspondence: Polytechnical Institute,
Bucharest, Rumania.

Uu u
Vo, =5 s
2u+y

A distance at the interface considered
positive if directed toward the center
of the drop;

Y, = y/a.

Greek symbols

o, - constants;

i length introduced by means of the
similarity variable #;;

4;, = d;/a;

& = sza

i = y/0;;

o; arbitrary functions;

v, function defined by equation (35);

U, viscosity of the dispersed phase;

u, viscosity of the continuous phase;

Tis = tDy/ az; )

0, polar angle (spherical coordinate
system).

Subscripts
1, for the dispersed phase;
2, for the continuous phase.

INTRODUCTION

THE PROBLEM of heat or mass transfer between
a drop or a bubble and a continuous phase has
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been usually examined by assuming that the
steady state is achieved and that the interface
concentration of the drop is constant. Of the
papers in which this problem is dealt with we
mention only a few [1-5]. In two recent papers
[6, 7] the time dependent convective diffusion
equation has been solved numerically. Bentwich,
Szwarcbaum and Sideman [6] have studied the
case of mass transfer in the continuous phase
assuming potential flow and Johns and Beckman
[7] the case of mass transfer in the dispersed
phase for small Reynolds numbers.

In the present paper the problem of mass
transfer will be examined by solving analytically
in a limiting case, the time dependent convective-
diffusion equations of the dispersed and of the
continuous phase. Two cases will be dealt with:
the case of small Reynolds numbers and the
case of potential flow. The problem will be
solved by means of a similarity transformation
suggested by the author in a previous paper [8].

MASS OR HEAT TRANSFER BETWEEN
A SINGLE SPHERICAL DROP AND THE
CONTINUOUS PHASE FOR Re < 1

The convective-diffusion equation has the
form

a0 w06 _ [a_

a i T a0 Vi e
2 dc; 1 0 (. o
+;5+—rzsmeza‘é(s‘“"@)] ()

where i = 1 refers to the dispersed phase and
i = 2 to the continuous phase. For the velocity
components Hadamard’s equations are valid

[3, 4]:
r2
V1= — g (1 - ?) cos 0 )

2 2
Bo.1 = Uo (1 - ;rz-) sin 0 3)

o)
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The diffusion coefficient in a liquid is very
small. For this reason if the time of contact of
an element of fluid with the interface is not too
large, the depth of penetration by diffusion is
also small. An element of liquid from the
continuous phase remains in contact with the
drop a very short time, of the order of 2a/U,
and continuously fresh elements of liquid are
brought into contact with the interface. For
this reason the depth of penetration by diffusion
in these elements is very small.

In the dispersed phase there exists the circula-
tion motion known as the “‘Hadamard’s rings””.
Elements of liquid are brought into contact
with the interface of the drop at the front
stagnation point and are moving along the
interface up to the rear stagnation point; in
this point the motion is dirrected along the
vertical up to the front stagnation point.
Consequently the elements of liquid brought
into contact with the interface are continually
the same, fresh elements coming into contact
with the interface only during the initial lapse
of time equal to that needed for an element of
fluid to pass through the distance between the
rear and the front stagnation point. However,
as long as the elements of fluid are in motion
along the interface a process of mass transfer
takes place between them and the liquid from
the continuous phase, while as long as they are
in motion along the vertical they exchange mass
with the bulk of the dispersed phase. In this
manner, though the elements of liquid brought
into contact with the interface are the same,
they are refreshed in some measure and the
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process of mass transfer at the interface occurs
for not too large times approximately as if they
would be fresh elements. There exists therefore
for not too large values of the time an approxi-
mate similarity with the mass transfer in the
dispersed phase.

Since the depth of penetration by diffusion
is small the concentration varies appreciably
in the immediate vicinity of the interface and is
practically constant at somewhat larger dis-
tances. However, in the immediate vicinity of
the interface y € @ and we may approximate
the velocity distribution by means of the
expressions obtained by expanding equations
(2-5) in series with respect to y/a and by retaining
only the first term.

In this manner one obtains

(6)
0

The calculations which follow are therefore
valid if the depth of penetration is small as
compared to the drop radius. Neglecting also,
as usual, the terms

1 6(19 )
r? sin 6 60 00,
and (2/r) (0c;/0r) as compared to D,;d%c;/dy**,
the following convective-diffusion equations
results

oc; 0%

V= — 2vozcos 0,
a

Vg, = — Ugsin 0.

dc;
or, T oY? ( 2Y cos 95_]?
.. 0c .
+ sin 0%), i=12 (8)

* We note that in the case examined here the average

value of
D, o/, p oc;
Psingoe\" " a0

over the drop surface may be neglected compared to the
average of D, d%c/0y* and also that the average value of
(2DJa)(6c,/6y) over the thickness J; of the diffusion boundary
layer may be neglected compared to the average of D; d%¢c;/dy*.
To these conclusions one may arrive by using equation (18)
for ¢,
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where
qs%g (9a)
1 @ 2aU
Pe, = i p _'l:_ 7 D, (9b)
YE% (9¢)

The following initial and boundary conditions
must be satisfied :

fOI‘ Ti = 0, Cl = cl'o and CZ = c2,0 (10)
dcy, - Oc,
forY=0, ¢, =Hc, and Dla—Y—— D, F%
(11)
forY -0 ¢ —ocp (12a)
forY - — o0c, 2 ¢y (12b)

The boundary conditions (12) are a result of
the fact that the depth of penetration by diffusion
is small and consequently the distribution of
concentration in the vicinity of the interface of
the drop may be approximated by that valid
for a semi-infinite fluid. We not also the fact
that the boundary condition (12a) implies the
assumption that the elements of liquid brought
into contact with the interface at the front
stagnation point have the initial concentration
Cy.o (see also the above discussion).

Equations (8) and the initial and boundary
conditions (10-12) are compatible with solutions
of the form

¢ = Cl( 1) (13)

where

A; = A(6, 1). (14)

r’i - 5

The new variable #; enables the transforma-
tion of equations (8) into

d’c; dc; [l 04?

— i = _ . 2
dn,?+'d 27, 2(Pe; cos 0) A;

Pe;, , 04
———sman] 0. (15)
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In order that ¢ = ¢(n,) and 4; = Az, 0), we
must have

1047 , Pe . oA

i-a—‘CT - 2(P€iCOS H)Al - —2—s1n 6“55'—ﬂ (16)
d2
dn, + b ‘dn, =0 an

B being an arbitrary positive constant. Selecting
B = 2, the solutions of equations (17) are

n
¢, = A, g e *dx + B, (18)

n2
¢, = A, (3)" e *dx + B,. (19)

The boundary conditions (11) and (12) enable
the determination of the four constants. One

obtains
Cl,o_c
_ 2\ H 2.0

4y = %——*———(& ) — (20)

p,] "H

21)

(22)

D,\*
C1,0 + C2,0 D.
1
Bz = D2 T
H + (’D—l)
In the establishment of the expressions of
the constants A; and B it is an important fact,

to be shown below [see equation (30)] that
51/‘52 = (Dx/Dz)i-

(23)
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The functions A; are determined by solving
equations

Z—ii — 4(Pe;cos ) g; — Pe; sin 0%% = 4, (24)
where
& = A} (29)
for the boundary condition
=20 for 7,=0. (26)

The last boundary conditions result as a
consequence of the initial condition (10). Indeed,
only if A; = 0 for t; = 0, equations (18) and (19)
satisfy the initial conditions (10).

The characteristic system which may be
attached to equation (24) has the form

e de @7
1~ Pesin® 4(Pe;cosB)e + 4 )

From the first equation one obtains
0
Pesr; + Intan 5= o

and from the second

a—l
ism@

Therefore
(4/Pe;) (cos 8 — % cos® @
= ¢,-(Pe,-1.‘,~ + ln tan 0/2),

(cosH 1 cos? 0)]

g; sin0 —
(28)

where ¢, is an arbitrary function.

The form of the functions ¢, is determined by
taking into account the boundary conditions
(26). For 7; = 0 we have

(d)i Intan g) =

4
- —e(cos 0 — %cos39).



SINGLE DROP AND CONTINUOQOUS PHASE MASS TRANSFER 1789

However 0 0 1-— tanzgexp (2t,Pe)
1 —tan?- 1 — exp{2Intan— —
2 2 0
cosf = 5= = 1 + tan? 3 €xp (21;Pe))
1+ tan?~ 1+ exp{2Intan=
2 2
and therefore 0 3
1 — tan? - exp (21,Pe;
¢; (Pe,fri + In tan Q) 1 2 P ) 29
2 -3 ] (29)
B ) 1 + tan? = exp (27,Pe)
1 —exp 2 7,Pe; + Intan - 2
_ 4 L 2
Pe; 1+ exp|2 (r Pe, + In tan Q) We remark the fact that the product
! 2
LT o\ _Del g 20U 10 4
1 I—CXp 2(Pe+lnta 5) TiPel 24‘u+ur Di—20#+[ll—
-3 AT
1 + exp |2 1;Pe; + Intan 2 does not depend on the index i. For this reason
Consequently - equation (29) leads for the ratio 4,/d, to the
equation
4 2 D\
2aind g _1 3 aa_1a
A?sin* 0 = Pe, | 6 —%cos® @ 3 ( D, (30)
For the mass flux N, one obtains
¢ C1,0
N. = _ . (% 2 % H Dy (Pe)\}
T TMN\ay) -0 m &;+1a 4,
p,)] " H
sin? @
X —5 5 ™I (31)
1 — tan? - 2T 1 — tan? 2T
. 3 1 2
cos§ — 3cos° 6 — 0 +§ 0
1 + tan? - 27 1 + tan®—e?7
The average mass flux over the surface of the drop is given by
= 2N s
= I 2na* Ny sin 8 d6
0
D, (Pel)* Hey o — €10 sin® 6 d§ 32)
~a \Van ) KaEa
¢\ H(%) +1 1- tanzgze” 1 1- tanzgze"
2 cos ) — 4cos® 0 — + =

l+tanzge" 3 l+ta.nzge"

5X
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If one introduces an overall mass-transfer coefficient K ,, defined by

N

Ki=——
' He, o — C1,o’ 33)
equation (32) may be written under the form
2K ,a Pe\* 1
Sh, = D‘ = (71> o Ww(T) (34)
! H{=2) +1
2
where
sin® 6 d@
¥(T) = 5 7 (35)
1 — tan? _¢27 1 — tan? ~e?7
L 2 1 2
o | cos8 — 3cos” 0 — 5 +§ — %
1 + tan2 — e2T tan2 - g2T
+ tan > e 1 + tan 2 €
Table 1 (34) leads to
T Pe,\?
i Shy = (7> WT). (37)
001 19930
0-10 6:340 :
030 3740 If t; > 0, equation (37) leads to
0-50 3014 21
1 2461 Shy = —/——, 37
2 2315 o Ynd G7)
3 2-309 . c oy .
5 2:309 ie. to the result of Higbie’s penetration theory.
1(1)8 %ggg For T » 1, equation (37) leads to

For an overall mass-transfer coefficient K,,
defined by

one obtains

2K,a  (Pey\* 1
D, _<T> T/D\F . l'l’(T)'
H\D,
(36)
Several limiting cases may be evidenced :

(1) If D, » D, the diffusion in the dispersed
phase is the rate determining step and equation

Sh2 =

4 (Pe)\} .
Shl-\/3(n). (37"
Equation (37”) is valid for a hypothetical
steady state which would be achieved if the
amount of mass transferred along the interface
were equal to that exchanged by the elements of
fluid with the bulk of the dispersed phase (so
that the elements of liquid brought into contact
with the front stagnation point had continuously
the concentration c; o).
(2 If D, » D, the diffusion in the continuous
phase is the rate determining step and equation
(36) leads to

Sh, = (%‘3—’)i WT).



SINGLE DROP AND CONTINUOUS PHASE MASS TRANSFER

IfD,»D,and T > 1

(Pey)* (38)

\/(3 )

The steady state for which equation (38) is
valid is achieved after a time given by T = 5.

It is of interest to note that the interface
concentration is constant and that the overall
mass-transfer coefficient may be obtained by
the usual law of additivity of the resistances.

It may also be stressed that in the framework
of the approximations used here the equations
for the mass-transfer coefficient are the same
for the continuous and for the dispersed phase.
A qualitative explanation of this result has
been given above. _

The main approximation used above is
0; € a. It is not difficult to show that such an
inequality is valid if Pe; > 1.

MASS OR HEAT TRANSFER BETWEEN
A SINGLE SPHERICAL DROP AND
A CONTINUOUS PHASE FOR
THE POTENTIAL FLOW

In the vicinity of a fluid boundary and for
sufficiently large Reynolds number the role of
the viscosity is not too important and for this
reason it is possible to approximate the velocity
distribution by that valid for potential flow.

In this case we have

3
v,;=U (1 —%)cos@

a*\ .
vy = — U (1 + :273-)51n0.

Since in the region of interest y < a, we may
approximate the above equations by

(39)

(40)

v, = — 3U£cos 6, 41)

ve; = — 3U sin 6. (42)
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Equation (1) becomes in this case (after the
above mentioned simplifying assumptions are
made)

de; ¢ B dc;
6_'c,~ = W + Pe,- (— 2YCOSOW
dc;
in 0 — 43
+ sin 60) 43)
where
3aU
Pe! = - — 44
2D, (44)

Equations (43) being of the same form as
equations (8) all the above equations obtained
for the mass-transfer coefficient may be ex-
tended to this case too, if Pe; is replaced by Pe;'.

In this manner we get

Pe 1
Shy = (—) W) @)
© ) g (P 41
D,
and
Pe) 1
Sh, = ( 2) _I—_D_i_lll(T) (46)
— (= 1
H<D1> "
where
, _ po. _3aUtDh;  3tU
T=Pe,.t,._2Dia2—2a. 47

It may be verified that in the limiting case of
D, » D, and T’ » 1 (steady state) one obtains,
as expected, Boussinesq’s equation

2 (2aU\?
Shy =—|—]) .
& Jn (Dz )
The steady state is achieved after a time
T = 5.
An equation of the same form is obtained in
the limiting case D, » D, and T’ > 1

2 [2aU\*
S’“‘%(D—f?'

Equation (49) is valid for a hypothetical steady

(48)

(49)
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state similar to that discussed above in con-
nection with small Reynolds numbers.

CONCLUSION

Exact analytical solutions have been obtained
for the time-dependent convective-diffusion
equations in the case of mass transfer from
spherical drops for the cases in which the depth
of penetration by diffusion is very small. The
method is based on a similarity variable
n; = y/é{t, 6) which enables the transformation
of the second order equation with partial
derivatives into an ordinary equation for the
concentration and a first order equation with
partial derivatives for §; = d{t, 0).
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Résumé—Les équations de la diffusion avec convection dépendant du temps pour le transport de masse

entre une goutte et une phase continue sont résolues dans deux cas: (1) le cas des petits nombres de Reynolds,

et (2) le cas de I’écoulement potentiel. La résolution est effectuée au moyen d’une variable de similitude

n; = y/6,6, t) qui permet de les transformer en une équation différentielle ordinaire pour la concentration

¢; = c{n;) et une équation aux dérivées partielles du premier ordre pour §; = §;(6, t). Les équations donnant

le coefficient de transport de masse pour les états stationnaire et non-stationnaire sont obtenues. Le temps
au bout duquel I’état permenent ets atteint est évalué.

Zusammenfassung—Die zeitabhingigen Konvektions-Diffusions-Gleichungen fiir den Stofftransport
zwischen einem Tropfen und einer kontinuierlichen Phase sind fiir zwei Fille gelost: (1) fiir den Fall
kleiner Reynolds-Zahlen und (2) fiir den Fall der Potentialgleichung. Die Gleichungen wurden mit Hilfe
einer Ahnlichkeitsvariablen n, = y/6(6, t) geldst, welche ihre Transformation in gewohnliche Differential-
gleichungen fiir die Konzentration ¢; = ¢(n;) und in eine Gleichung erster Ordnung mit partiellen
Ableitungen fiir §; = 640, t) ermoglicht. Gleichungen fiir den Stoffiibergangskoeffizienten fiir stationére
und instationdre Zustind liessen sich erhalten. Die Zeit, nach welcher der stationédre Zustand erreicht ist,
wird berechnet.

AnBoranua—PelleHH ypaBHeHHA KOHBeKTHBHON auddysun, sasucAielt oT Bpemeru, AJAA
nepeHoca MAacCH Mex<ny kamiaeft u cmommumot ¢asoit B aByx cayvasax: (1) npu HeGombumx
uyycinax PeftHosspaca M (2) anfA caydas NOTEHUMATILHOrO MOTOKA. YDABHEHMA DEINATCHA C
NOMOWIbIO TMOACTAHOBKH 71 = y/8i(0, 1), uTo mossoaser npeoGpa3oBaTh [aHHWE YpaBHEeHHA
B o6nunue quddepeHunanbusie ypaBHeHHA NJIA KOHUEHTPALUNH ¢i = Cf (ps) U B ypaBHEHHe
nepBOro NOPANKA B YACTHHX NMPOM3BORHEX Aua & = & (0, ¢). ITony4ensl ypaBHeHMA RAA
xoappuupenTa MaccoobMeHa B CTALMOHAPHHIX M HECTAUMOHAPHHX ycaoBuAx. OnpejeneHo
BpeMA yCTaHOBJIEHHUA CTAIMOHAPHOTO COCTOAHMA.



